
Statistical Inference



What is Statistics?

• It is a science that involves data
summarization, experimental design, data
collection, etc.

• Recently, it has been considered to
encompass the science of basing
inferences on observed data and the
entire problem of making decisions in the
face of uncertainty.
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Difference between probability
and statistics



Difference between P and S

Probability Statistics

1 We have a fair coin. We have a coin.

2 Flip the fair coin ten
times.

Flip the coin ten
times.

3 P({all are heads}) = ? All heads are
obtained,
then is it a fair coin?
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So, in the same random experiment,

• a probabilitist will only ask the probability of getting a
certain event under some probabilistic model assumptions
before doing the experiment, (kind of mathematics
approach), while
• a statistician will make some conclusion about the
probability model after the experiment (kind of
physics approach)



Refer to the above example of tossing a coin.

A probabilitist will tell you that if the coin is fair, then
P({all are heads}) = (0.5)10=0.0009765625.

So, in some sense, probability is about looking forward.

For a statistician, if all heads are obtained, then s(he) will
make a conclusion that the coin is NOT fair; otherwise, it is
very unlikely to get ten heads in a row.
So, we can say that statistics is about looking backward.



Statistical Inference



Use a statistical approach to make an inference about

the distribution of a sample of data we collect.

• What distribution(s) are the data from?

Normal distribution? Poisson distribution?

or other distributions we have not seen before?

Suppose that they are from the normal distribution.

• What normal distribution(s) are the data from?

N(0,1)? N(0,5)? N(-3, 5)? or other normal distributions?

What is Statistical Inference



What is Statistical Inference

Use a statistical approach to make an inference about

the distribution of a sample of data we collect.

The population or macroscopic phenomenon is always
unknown itself,
because some, but not all, of the data of our interest can be taken.
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Population (macroscopic phenomenon)
and Sample

Population is a set of measurements in which we are interested.

If X is the random variable of our interest in a random experiment, then
the population is the distribution of X and each observation in a population
is just a value of X.

However, it is impossible or impractical to know the underlying
distribution of the random variable.

For instance, we are interested in the income of all  NY people per month,
but it is impractical to collect the data of several million NY people. At
least, it is costly and time consuming to do so.



Population and Sample
Thus, what we can do is to use a subset of observations from the
population to help us make inferences concerning the population.

This bring us to consider the notion of sampling:
A sample is a subset of a population.

The total number of the sample is called a sample size, often denoted by n.



Population and Sample

Population
Unknown, or not fully
specified.

Sampling: draw a sample of n data

Sample
of size n

Inference



?
Draw a sample from the population or the distribution of the
random variable X.

Distribution of X is
UNKNOWN.

 Obtain the actual/observed values of X.

If we want to draw a sample of size n, then we often denote
the sample by {X1, X2,…,Xn}, where Xi , i=1,…, n, represents
the ith observations of X.



If we want to draw a sample of size n, then we often
denote the sample by {X1, X2,…,Xn}, where Xi , i=1,…, n,
represents the ith observations of X.

After sampling, we have observed values of X1,X2…,Xn,
and denoted by x1,x2,…,xn, where all xi is a known real
number.

Before sampling, each Xi is random and have the same
distribution as X. In this course, we also assume that all Xi
are independent. In statistics, if a set of random variables
are independent and identically distributed (i.e. same
distribution), then it is said to be a random sample.



Referring to the example of the income of NY people per
month, we can collect the data/sample by asking some NY
people how much they earn.

For instance, at the first observation of the sampling, we
may get $10,000,  $9,460 at the second, $52,000 at the
third, and so on. Thus, we can say that

x1=10000, x2 = 9,460, x3=52,000,…

Remark that each observation can provide us some
information about the underlying distribution. So, we should
collect data/observations as many as possible.



Population Parameter
In most situations, we only want to know some quantities
about the population, say the population mean, instead of
the population itself.

Such quantities are called population parameters, which
are often unknown.

For instance, we may have an interest in the average
income of NY people only, or we do not care about how the
distribution of the mid-term score in our class looks like, and
what we really want to know is the mean and the standard
deviation of the scores.



Population Parameter

We often use Greek letters to denote population parameters,
say µ, σ, θ, λ, and so on.

In this course, we only focus on two population parameters:

Population mean (µ, or E(X))

and population variance (σ2, or Var(X)).



Mission!!

an inference about the unknown distribution.

Use the information from the data we collected to make



Mission!!

an inference about the unknown distribution.

an inference about the (or the function of ) unknown
parameter(s) of the specified distribution.

Use the information from the data we collected to make

The form of the distribution is known.

For instance, we assume that the data are from N(µ, σ2),
where µ and σ2 are unknown.



Statistical Inference

Part I: Parameter estimation



How to make a statistical inference
about the unknown parameter(s)?

• Parameter estimation

• Hypothesis testing
Data



Draw a sample of n data

Population

of X
( partially specified )

E(X) ?
Var(X) ?

How to draw the sample?

Do the random experiment for X
repeatedly (say, n times) without
replacement.
 Obtain a sample of independent
and identically distributed data



Draw a sample of n data

Population

of X
( partially specified )

E(X) ?
Var(X) ?

How to draw the sample?

Do the random experiment for X
repeatedly (say, n times) with
replacement.
 Obtain a sample of independent
and identically distributed data

Random
sample



Draw a sample of n data

A random
sample of size n

Population

of X
( partially specified )

E(X) ?
Var(X) ?

X1 = x1,

X2 = x2,

….

Xn = xn



A random
sample of size n

X1 = x1,

X2 = x2,

….

Xn = xn

Recall that for i = 1, …, n,

Xi represents the ith observation
of X before sampling, so it is
unknown and unpredictable, i.e.
Xi is a random variable.

After sampling, the actual value
of Xi is known, say xi a fixed
number.



Draw a sample of n data

A random
sample of size n

Population

of X
( partially specified )

E(X) ?
Var(X) ?

X1 = x1,

X2 = x2,

….

Xn = xnInference



“A Statistic”
For population parameters, how can we get some information
about them from a (random) sample {X1, X2, …, Xn}?

Use a function of a random sample, say T(X1, X2, …, Xn),
called a statistic.

For instance,
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A Statistic
Caution:
a statistic does not depend on any unknown
quantities. So,

is NOT a statistic, unless µ is known.
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After sampling, we have actual values of a (random)
sample {X1, X2, …, Xn}, i.e. {x1, x2, …, xn}, so we can also
calculate the actual value of the estimators.
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are the respective observed values of the sample mean and
sample variance.

For instance,



If we use a statistic to ESTIMATE an unknown parameter(s),
then it is called an (point) estimator of the parameter.

The typical (point) estimators for µ and σ2

are

respectively.
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Remark that in statistics, the observed value of the estimator
is called an estimate of the unknown parameter.

For instance, x and s2 are the respective estimates of µ
and σ2.



Estimator
If θ is the parameter being estimated, then we often denote
the estimator of θ by

),,(ˆ 21 nXXX 
or simply

̂
Remark that since an estimator/ a statistic is a function of random sample, it is
also random. Thus, there is a distribution that can be used to describe the
behavior of the statistic. Such a probability distribution of a statistic is called a
sampling distribution.



Desirable properties of Estimators
As expected, for an unknown parameter, say the population mean µ,
we can find a whole bunch of estimators to estimate it, say sample
mean, sample median, sample mode, or even a constant like 10.

For selecting a “more reasonable” estimator(s), we require estimators to
have some nice properties, say unbiasedness stated below.

Unbiasedness:
An estimator         of          is said to be unbiased if                                  .
Otherwise, it is biased.

̂   )ˆ(E



Unbiasedness

That is, if an estimator is unbiased, then it means that on average, the estimator

is equal to the unknown parameter     .
̂



Unbiasedness:
An estimator         of          is said to be unbiased if                                  .
Otherwise, it is biased.

̂   )ˆ(E
Interpretation:

In the long run, the amounts by which an estimator(s)
over- and underestimates the parameter(s) will
balance, so that the estimated value will be correct “on
the average”.

The unbiasedness is one of the good properties to evaluate
the goodness of estimators.



Example
Consider a discrete random variable X with pmf given by

P(X = 2) = p
P(X = 4) = 2p
P(X = 6) = 3p
P(X = 8) = 4p
P(X = 10) = 1- 10p

and P(X = i) = 0 otherwise, where p is an unknown parameter
in (0, 1/10).

Not fully specified

After some calculation, we can find that

E(X) = 10 – 40 p and Var(X) = 200p – 1600p2.

Unknown



Now, we want to make an inference about

E(X) = 10 – 40 p and Var(X) = 200p – 1600p2.
How?: we can draw a random sample of X:

For simplicity, let’s say that a sample of size n=2, X1 and X2, are
drawn. So, the respective estimators of μ=E(X) and σ2 =Var(X)
are
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Suppose that after sampling, the actual values of X1 and
X2 are x1 = 2 and x2= 4, respectively. Then we can say
that
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are the respective estimates of µ = E(X) and σ2 = Var(X)

based on the observation (x1, x2) = (2, 4).



Remark that if we draw another sample of X1 and X2, then we
would get different actual values, because of the randomness
of X1 and X2.

Now, based on the setting of X in this example, we can also list all
possible values of the sample mean

and sample variance S2, and then find the corresponding
probabilities, by the assumption that X1 and X2 are the random
sample of X.

X

Here we only focus on the probabilistic statement of

and the corresponding result of S2 can also be obtained in a
similar way.

X



Possible value of Probability
2 p2

3 4p2

4 10p2

5 20p2

6 2p + 5p2

7 4p – 16p2

8 6p – 44p2

9 8p – 80p2

10 1 – 20p + 100p2

X

Sampling distribution of X
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Are those results of the sample mean always true?



Unbiasedness of sample mean
The following theorem shows that the sample mean of a random
sample is an unbiased estimator of the population mean.

Consider a random sample of size n, {X1, X2, …, Xn} from a common
distribution with mean µ and variance σ2. If
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Questions

1. Under what condition is                    an unbiased estimator

of µ, if  {X1,…, Xn} is a random sample from the population
with mean µ ?
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2. Show that the sample variance S2 is unbiased for σ2 , i.e.
E(S2) = σ2.



Summary

Unknown

Unknown

The distribution of X is
not fully specified.







Consider the behavior of the statistic before sampling.







Based on the property of unbiasedness, we can only
consider the estimator that its mean is equal to the
parameter being estimated (i.e. the unbiased estimator).

However, there are still many unbiased estimators of an
unknown parameter. Then, how to compare the
performances among unbiased estimators?



Comparison of unbiased estimators
If there are two unbiased estimators of θ, say        and        , then1̂

2̂
we can consider their variances, and prefer the unbiased estimator
with smaller variance.

For instance, if                                        , then we prefer       , and say

that is more efficient than .

)ˆ()ˆ( 21  VarVar  1̂

1̂
2̂



Comparison of unbiased estimators
From the previous theorem, we can see that for a random sample of
size n, if n increases,  then the variance of the sample mean will
decrease, so the efficiency of the sample mean will increase.

That's a reason to support that we should draw a sample as many
as possible.

 A sample mean of 1000 data is more efficient than a sample mean of
100 data.



Problem with point estimation
The point estimator can only produce a single estimated
value of the unknown parameter. Indeed, we can seldom
estimate the true value of the unknown parameter correctly.
That is, it is almost impossible to have a sample mean
exactly equal to the population mean.

Also, as mentioned before, an estimator is a function of a
random sample, so we will get a different single value of the
unknown parameter when we draw another sample.



If                                     , then we cannot conclude that the
true value of θ is equal or close to 1.2 or not.

2.1),,(ˆ 1 nxx 

For another observed values (x1’,…, xn’),

8.5)',,'(ˆ 1 nxx 

Then, what is the true value of θ? 1.2 or 5.8? close to 1.2
or 5.8? or in between or far away from these two numbers?

Useless? Why still consider the point estimator?

Problem: Come from the variability of the estimator.



In addition to the (point) estimated value of the estimator,
some statisticians suggest that we should also consider the
variance of the estimator.

Use the single value and the variance of the
estimator to form an interval that has a high probability
to cover the true value of the unknown parameter.

How?

This method including the variance of the point
estimator is called interval estimation, or
"confidence interval".


